Par Baptiste Rochette, Valentin Gobert et Monica Lisacek
Encore aujourd'hui, le traitement des grands brûlés fait partie des interventions médicales les plus critiques et requiert un savoir faire hautement spécialisé. En effet, les brûlures sévères représentent des types de traumas extrêmement délicats à traiter. Les blessures sont sévères et très douloureuses; l’efficacité des méthodes de traitement à court terme n’est peut-être pas évidente à percevoir, mais est primordiale pour une bonne guérison sur le long terme. Cependant, plus le séjour à l’hôpital est prolongé, plus les risques d'attraper des maladies nosocomiales sont accrus.
Au Centre Hospitalier Universitaire Vaudois (CHUV), les chirurgiens commencent à réhydrater le patient brûlé et font un contrôle de ses organes vitaux pour ensuite nettoyer sa plaie - il s’agit en fait d’enlever les tissus morts. Le but de cette opération est de réduire l’inflammation causée par la présence de ces tissus. On y applique enfin des pansements dits « biologiques » à base de collagène que l’on change tous les deux jours, lors de la douche du patient. C’est en effet à ce moment que le débridement, c’est-à-dire le nettoyage de la plaie, s’effectue. L’amélioration des pansements biologiques est le défi majeur du projet de recherche B5 (Biological, Biodegradable and anti-Bacterial Burn-wound Bandages) soutenu par SwissTranMed, un projet mis en place spécialement pour améliorer les techniques de traitements actuels de ces traumatismes. Malgré l’attention minutieuse donnée au traitement de ces plaies, le changement de pansement ouvre la possibilité à de nombreuses infections bactériennes telles que celles provoquées par le germe coriace Pseudomonas aeruginosa.
Le projet B5 implique de nombreux partenaires: à Lausanne (CHUV, EPFL, UNIL), à Berne (UNIBE), à Zurich (UZH), et à Genève (UNIGE). Aujourd’hui, ces différents centres de recherches ont pour objectif de mettre au point de nouveaux pansements biologiques. Ces types de pansements existent déjà, toutefois leur utilisation en cas d’infections est impossible étant donné qu’ils ne possèdent pas d’activité antibactérienne. Le pansement biologique consiste, dans le cas présent, en une matrice de collagène dans laquelle des cellules fœtales sont insérées. L’avantage de ces cellules est leur capacité à produire des facteurs de croissance qui favorisent la division cellulaire et ainsi une bonne cicatrisation de la plaie. Lors de brûlures sévères sur de grandes surfaces (2-3eme degré) la seule production de facteurs de croissance est insuffisante, c’est pourquoi les chirurgiens ont recours à la greffe de peau. Habituellement, un peu de peau saine est prélevé sur le patient et est mis en culture en vue d’une greffe environ deux semaines plus tard. Le problème majeur reste les infections bactériennes, et c’est pour cela que les chercheurs essaient tout d’abord de comprendre l’environnement type des plaies des grands brûlés. L’analyse physico-chimique des exsudats permet d’identifier les paramètres importants dans ce liquide biologique et ainsi de les reproduire artificiellement. Il est toutefois très difficile d’identifier l’environnement commun à toutes les plaies des patients, puisque les exsudats sont tous différents et il y en a même qui contiennent des antibiotiques. Cependant; il semblerait que ce soit la seule manière de comprendre comment les bactéries colonisent le pansement.
Le Dr Gonzalez, chercheur en biologie, nous a parlé d'une de ses multiples approches : il essaye par exemple d’analyser le comportement de Pseudomonas dans les exsudats de brûlures, en particulier la production de facteurs de virulence, et observe au microscope confocal la prolifération des bactéries à l’intérieur des matrices de collagène. Parmi ses prochaines expériences figure l’analyse du profil d’expression des gènes de Pseudomonas aeruginosa lors d’une croissance dans un exsudat de référence (il s’agit d’exsudats issus d’un mélange de plusieurs exsudats, caractérisé par une absence de tout traitement antibiotique). A l’EPFL, ses collaborateurs tentent de comprendre comment les peptides anti-bactériens s'intègrent dans les pansements. Ces peptides agissent contre une bactérie très étudiée: la Pseudomonas aeruginosa - la bactérie la plus présente dans les infections des plaies des grands brûlés. Elle peut se développer dans l'exsudat, même si elle ne s’y développe pas toujours bien et nécessite environ 12 heures « afin de s’habituer aux conditions du milieu ». Les chercheurs ont trouvé dans les exsudas différents composants comme l'urée, le lactate, du cholestérol et des minéraux tels que le zinc et le cuivre dont les deux derniers sont les plus importants. C’est la concentration de Zn et de Cu relative à d’autres milieux biologiques qui intéresse particulièrement les chercheurs, surtout quand cette concentration est “élévée”. En effet lorsque la bactérie est en contact avec ces métaux, afin de les éliminer, la P. aeruginosa active certaines voies de signalisation qui activent à leur tour des gènes pour une pompe à efflux qui a pour but d’expulser les métaux de la bactérie. Le problème est que cette réaction engendre également l’inhibition d’un gène codant pour une porine, c’est-à-dire un gène provoquant des portes d’entrées pour les antibiotiques de la famille des carbapénèmes, parmi les derniers antibiotiques efficaces contre Pseudomonas. En somme, cette réaction entraîne une résistance de la bactérie aux antibiotiques. Sa résistance se manifeste par une virulence comme le montrent des pigments spécifiques de couleur bleue, la pyocyanine, et la sécrétion de toxines. Des chercheurs de Genève ont montré dans de précédentes études que certains appareils médicaux, tels que les cathéters urinaires, relâchent dans le malade du zinc ou du cuivre pouvant induire une résistance aux antibiotiques chez la bactérie P. aeruginosa. L’induction (à ne pas confondre avec sélection, ici on ne parle pas de mutations) de cette résistance aux « derniers » antibiotiques pose un grave problème médical, créant de nombreuses complications dans le traitement des patients infectés.
Il subsiste néanmoins de nombreuses questions : quelle est la réponse de la bactérie dans le milieu ? Fait-elle face à un environnement hostile ? Quelles sont les synthèses activées ? De nombreuses questions qui nécessitent encore des recherches assidues par Dr Manuel Gonzalez et ses collaborateurs.
Pour en savoir plus :
http://www.unige.ch/sciences/biologie/biveg/microbio/themes/KarlPerron/RecherchesKP.html
http://www.chuv.ch/soinsintensifs
https://fr.wikipedia.org/wiki/Pseudomonas_aeruginosa
Nous remercions le Dr Manuel Gonzalez qui a pris le temps de nous expliquer en quoi consistent ses recherches, et qui nous a beaucoup aidé lors de la rédaction de cet article!