Overblog Suivre ce blog
Administration Créer mon blog
19 décembre 2013 4 19 /12 /décembre /2013 13:57

Fracture tes plasmides et découvre l’enzyme !

Par Marina Seiler, Alexandre Nolté et Dylan Terrot

en partenariat avec

banniere 

Le clonage de l’ADN est une technique de plus en plus commune de nos jours, loin de la complexité de la Science Fiction. Nous allons vous présenter la première étape de celui-ci en vous montrant comment il est possible de découper des plasmides (molécules d’ADN circulaires capables de se répliquer d’elles-mêmes que l’on trouve uniquement dans les organismes bactériens) qui servent au clonage d’ADN. Le clonage de l’ADN correspond à l’intégration de fragments d’ADN étranger (provenant d'humains par exemple) dans un plasmide.

Pour voir un exemple de clonage :

http://bioutils.unige.ch/experiences/exp_clonage.php

 

Plusieurs étapes ont été nécessaires pour mener à bien notre expérience (réalisée lors de notre visite à l’UNIGE) :

- Extraire les plasmides à partir de bactéries.

- Digérer ces plasmides avec des enzymes de restriction (BamH1 ou MSP1) qui coupent l’ADN à des endroits particuliers en reconnaissant des séquences d’ADN spécifiques, appelées sites de restriction (qui ne sont pas les mêmes pour tous les types d’enzymes de restriction).

Important : le nombre de sites de restriction sur l’ADN du plasmide n’est pas le même pour toutes les enzymes de restriction.

 

Sur l’image ci-dessous, on voit le nombre de sites de restriction en fonction de l’enzyme pour le plasmide utilisé lors de l’expérience (le plasmide pUC19-TIF qui comprend 8297 paires de bases ou pb) ainsi que le nombre de fragments d’ADN obtenus après digestion (et leur longueur) :

 

Image2 ap svt

Pour vérifier que les plasmides ont bien été coupés par les enzymes de restriction utilisées (BamH1 ou MSP1), nous avons effectué une électrophorèse sur gel agarose. Voici une image montrant la préparation du processus (cliquez dessus pour en savoir plus):

Image1 ap svt

Ce processus va permettre de séparer les différents morceaux d’ADN selon leur taille dans un champ électrique. Ici, les morceaux d’ADN vont migrer vers la «borne +» puisque les groupes phosphates présents dans l’ADN sont chargés négativement. Les plus petits morceaux d’ADN vont migrer beaucoup plus loin que les plus gros, qui sont ralentis par leur masse. Comme nous les avons coupés en plusieurs parties, nous allons pouvoir vérifier si le découpage a eu lieu en comptant le nombre de bandes d’ADN différentes.

Voici le résultat obtenu après avoir déposé dans différents puits (numérotés de 1 à 6) toutes les solutions obtenues :

ap4.JPG

Les colonnes non numérotées sont des tests.

 

Après avoir eu toutes ces explications, réussissez-vous à déterminer quelle enzyme a coupé chaque plasmide aux différents puits numérotés de 1 à 6 (reportez-vous au document qui présente le nombre de sites de restriction sur le plasmide) ?

Source images : BioOutils - UNIGE

 

 

 

Solution : Pour chaque puits nous pouvons observer différentes migrations de morceaux de plasmide. Pour les puits 1, 3, 4, 5 chaque ligne de migration obtenue comporte deux bandes d’ADN donc deux morceaux de plasmide. En relation avec le premier document, on peut affirmer que ces plasmides ont été digérés par l’enzyme BamH1, puisqu’il y avait deux sites de restrictions, donc deux fragments d’ADN après digestion. 

Pour les puits 2 et 6, on peut en déduire qu’il y a eu digestion avec Msp1 car on peut voir 13 morceaux. On devrait en obtenir 18, mais comme certains morceaux ont la même taille, ou presque, on ne peut pas les distinguer. Le fait que la digestion n’a pas été complète peut aussi faire varier le nombre de fragments d’ADN obtenu.

 

 

Repost 0
Published by lebioblog - dans BIOTECHNO
17 décembre 2013 2 17 /12 /décembre /2013 15:37

Les phages au secours de la médecine

 

par Vanessa Parisi et Océane Lataste-Munter

 

Quelques définitions pour mieux comprendre :

Bactéries : organismes vivants unicellulaires et procaryotes présents dans tous les milieux, souvent pathogènes.

Virus : micro-organismes capables de se répliquer en pénétrant dans une cellule

Sans les virus la Terre serait recouverte d’une épaisse couche de bactérie !!

Bactériophage : Virus s’attaquant aux bactéries et se multipliant à l’intérieur de celles-ci provoquant ainsi l’explosion de la bactérie et la propagation des virus dans l’organisme.

Un bactériophage aussi appelé phage est spécifique à une bactérie donnée.

Le phage injecte son ADN dans la bactérie qui va le lire (en effet l’ADN est universel) et va ainsi produire des phages qui vont la détruire.

 

De nos jours, les bactéries sont de plus en plus résistantes aux antibiotiques. Mais pas de panique ! Une solution existe: LES PHAGES !

Pour comprendre leur utilité, visionnez la vidéo (une émission du 11 septembre 2013 sur la RTS) en cliquant sur le lien ci-dessous.

http://www.rts.ch/emissions/36-9/5102290-bacteries-resistantes-des-virus-au-secours-des-malades.html

 

 Résumé : Cette vidéo est un documentaire sur l’utilisation des phages, très répandue à l’est de l’Europe mais méconnue à l’ouest. A travers l’exemple d’un homme atteint de la mucoviscidose, nous découvrons l’efficacité des phages contre cette maladie contre laquelle la médecine occidentale ne peut rien faire. En effet, dans la clinique géorgienne où il est allé, les médecins prélèvent un peu de mucus de ses bronches contaminées par les bactéries et testent sur lui différents « cocktails » de phages. Finalement, le « cocktail » le plus adapté pour détruire la bactérie sera prescrit au malade.

En Géorgie, la prescription des bactériophages est prioritaire sur celle des antibiotiques. En effet, une bactérie peut évoluer et devenir résistante aux antibiotiques alors qu’un phage évolue en même temps que la bactérie. Dans le second exemple de la vidéo, on voit le cas d’un homme, dont la jambe était infectée par un staphylocoque doré contre lequel aucun antibiotique ou greffe n’étaient efficaces. Il était prêt à recourir à l’amputation. Le recours aux bactériophages lui a permis de conserver sa jambe. Pour trouver cette solution, il a dû faire des recherches de son côté. Il peut aujourd’hui marcher mais est en colère contre la médecine occidentale qui ne l’a pas mis au courant de l’existence de ces virus tueurs de bactéries.

Cette vidéo présente les phages comme une solution très efficace. On espère donc qu’ils seront également utilisés en occident prochainement !



Images extraites de la vidéo :

phage1-copie-1 

Les récepteurs du phage reconnaissent la bactérie.  Le phage s’accroche à elle et lui injecte son ADN (contenu dans la tête).

phage 2

Au cours des minutes suivantes, plusieurs phages s’accrochent à la bactérie et lui injectent également leur ADN.

phage-3.jpg

La multiplication des phages à l’intérieur de la bactérie finit par la faire exploser.

 

Remerciements à Karl Perron de l'Université de Genève (BiOutils) pour ses explications éclairées.

banniere

Repost 0
Published by lebioblog - dans BIOACTU
17 décembre 2013 2 17 /12 /décembre /2013 12:09

 

decopartners

 

Jeudi 12 décembre, des élèves et des profs motivés ont participé à la journée 4 R (pour Réduire, Réutiliser, Réparer et Recycler) afin de sensibiliser l'ensemble de la communauté scolaire au recyclage, à la valorisation des déchets et aux économies d'énergie qui en découlent.

Une réussite !

Cette journée entre dans le cadre du projet Comenius "Energy and sustainability" auquel participe le Lycée de Ferney avec d'autres écoles de l'Union européenne : le Severn Vale College de Gloucester, Royaume Uni, le Lycée de Szolnok en Hongrie, le Liceo Classico Petrarca à Arezzo en Italie, le Gimnasium Liceum Siostr Nazaretanek de Varsovie en Pologne et la Veiavangen Skole en Norvège, 

Très vite, de nouvelles pages sur le sujet.

 

Pour en savoir plus, cliquez sur le logo ci-dessous (site dédié au projet)  : 

 

cropped-bandeaudiary3.jpg

 

 

affiche-recycle-3-changer.JPG

Photomontage : Morgane Dupont

Repost 0
Published by lebioblog - dans BIOACTION
7 novembre 2013 4 07 /11 /novembre /2013 12:53

L'équipe de choc d'AP de Tle S est allée enquêter sur les molécules et le clonage des gènes le 16 octobre dernier à l'UNIGE.

Ils préparent leurs compte-rendus. Bientôt en ligne.

Les voici en action dans le laboratoire.

Un grand merci à Karl Perron pour sa disponibilité et son enthousiame.

 

DSC01445[1] DSC01446-1-.JPG 

DSC01447-1-.JPG DSC01448-1-.JPG

Un petit cours sur le clonage bactérien et le pipettage de solutions.

DSC01449-1-.JPG DSC01450-1-.JPG

DSC01451[1] DSC01452-1-.JPG

DSC01453[1] DSC01454-1-.JPG

 DSC01455-1-.JPG DSC01457[1]

Après la digestion du plasmide bactérien par les enzymes de restriction...

DSC01456[1] DSC01458-1-.JPG

DSC01459[1] DSC01460-1-.JPG

... le stress du dépôt des échantillons dans les puits du gel pour l'électrophorèse de l'ADN.

DSC01461-1-.JPG DSC01463-1-.JPG

L'explication de l'expérience et des résultats obtenus, et plus encore, bientôt en ligne avec, sans aucun ordre d'apparition à l'écran : François Guillemin, Océane Lataste-Munter, Alexandre Nolté, Vanessa Parisi, Marina Seiler et Dylan Terrot.

 

Repost 0
Published by lebioblog - dans BIOACTU
17 juin 2013 1 17 /06 /juin /2013 14:39

Par Baptiste Pugnat et Iris Rivoire

Starring : Spack, le robot microscophile

 

Pour découvrir en vidéo le fonctionnement et les exemples d'utilisation du microscope optique et du microscope électronique, cliquez ci-dessous sur Spack :

Sans titre

« Le principe des différents microscopes sont étudiés en cours de physique-chimie, Cependant, c’est bien sur un blog de SVT que nous vous expliquons le fonctionnement de cette merveille de technologie. Le textes sont parfois bien pompeux, de ce fait, avec Baptou nous vous avons fait une super vidéo (on y travaille depuis novembre...) sous les ordres du terrifiant M.Guichot (qui fait des blagues pas drôles.) Le BAC est là, regardez donc ce lien afin de faire une pause culture dans vos révisions. Joyeux BAC, kiffez bien votre vie :) »

Iris

 


 


Repost 0
Published by lebioblog - dans BIOTECHNO
29 mai 2013 3 29 /05 /mai /2013 15:19

 Par Adrien Pagliano et Killian Forel

 

L'ïle de la Réunion est située dans l'océan Indien à environ 100 km à l'est de Madagascar. C'est une île volcanique située sur un point chaud. Un point chaud est une remontée magmatique d'origine mantellique (du manteau) à l'origine d'édifices volcaniques, notamment les allignements volcaniques intra-plaque. La source de magma est immobile contrairement aux plaques lithosphèriques qui se déplacent au dessus du manteau.

Une île volcanique correspond à du magma solidifié. Un jour, l'île volcanique ne se situera plus au dessus du point chaud : le volcan va s'éteindre tandis que le point chaud continuera son activité. Cela va permettre la création de nouvelles îles volcaniques.

La plaque indienne, sur laquelle se situe l'Île de la Réunion, se déplace vers le Nord-Est à raison de 2,5 cm/an. D'ailleurs, il y a 65 millions d'années, l'Inde se situait au dessus de ce point chaud. C'est à cette époque qu'il y a eu la formation des Trapps du Deccan, immenses coulées de lave (voir illustrations).

Si on pouvait revenir dans un million d'années on pourrait constater le déplacement de la Réunion de 2500 km vers le Nord-Est !

De nombreux archipels se sont formés de la même façon, comme l'archipel d'Hawaii.

Le volcanisme de point chaud n'a par contre absolument rien à voir avec les arcs insulaires comme le Japon et l'Indonésie.

 

la-reunion.JPG

Les points chauds en image :

http://dboudeau.fr/site/?p=1649

http://expositions.bnf.fr/ciel/elf/4tecto/07chaud.htm

 

Repost 0
Published by lebioblog - dans BIOACTU
16 avril 2013 2 16 /04 /avril /2013 12:09

 

Par Killian Forel et Louis Cottin

 

Durant la phase S. de l’interphase, l’ADN se réplique. Cela permet aux deux cellules produites lors de la division cellulaire d’avoir de l’ADN

Les deux brins de l’ADN d’origine,durant la réplication, servent chacun de modèle pour la synthèse d’un nouveau brin.

Cela s’appelle une réplication semi-conservative : à chaque fois que de l’ADN est synthétisé, les deux ADN fils sont constitués d’un brin de l’ADN d’origine et d’un brin synthétisé. Ainsi, à chaque fois qu’il y a une réplication de l’ADN, une partie de l’ADN est renouvelée, contrairement à ce qui se passerait lors d’une réplication conservative, où une copie de l’ ADN serait produite sans le moindre changement dans l’ADN d’origine.

Ainsi, avec la réplication semi-conservative, après la première réplication, les deux ADN fils possèdent un brin de l’ADN d’origine.

Voici le lien vers une animation expliquant cette duplication de l’ADN :

http://www.cea.fr/jeunes/mediatheque/animations-flash/a-la-loupe/l-adn

 

ap svt2

  

Repost 0
Published by lebioblog - dans Le BaBA de la BIO
15 janvier 2013 2 15 /01 /janvier /2013 13:47

par Roberta Maggi, Ulysse Lehnert et Adrien Pagliano

 

Nous allons vous expliquer comment distinguer facilement l'ADN des protéines. Voici quelques définitions essentielles à savoir pour commencer :
Une protéine est un assemblage d'acides aminés.

L'ADN est contenu dans les chromosomes et formé de nucléotides (base azotée, phosphate et désoxyribose qui est un sucre).

 

Ces deux entités sont liées par un lien très important mais implicite. Nous allons le découvrir petit à petit.

Les chromosomes sont constitués d'ADN. Cela est visible sur cette animation: http://www.biologieenflash.net/animation.php?ref=bio-0023-2

L'ADN est une molécule nommée acide désoxyribonucléique. L'ADN se situe dans le noyau tandis que les protéines se situent dans le cytoplasme de la cellule.

L'ADN contient des gènes, étant donné qu'il constitue les chromosomes. Le rôle des gènes est de fabriquer des protéines pour que celles-ci puissent agir dans les cellules. Il faut prendre en considération le fait qu'il existe plusieurs types de protéines. Il faut savoir que l'ADN ne peut pas agir tout seul pour renouveler le ''stock'' de protéines de la cellule.

 

Image-cellule-JPEG.png

Prenons l'image de l'ADN comme un ordinateur. Cet ordinateur contient des fichiers, des données illisibles, ici l'information génétique, que prélève une clé USB (l'ARN messager). Ceci fait, cette clé sort du noyau par les pores de l'enveloppe nucléaire et donne ses données et fichiers prélevés à une machine, qui symbolise le ribosome, qui va organiser les informations reçues pour créer plein d'objets différents, les protéines, selon les informations qu'elle reçoit, étant elle-même une protéine. En image :

Screen shot SVT JPEG

Repost 0
Published by lebioblog - dans Le BaBA de la BIO
19 décembre 2012 3 19 /12 /décembre /2012 15:10

par Sarah-Laure Rincourt

 

Description, explication et comment on procède

La technique d’autoradiographie a pour objectif de marquer  une molécule spécifique (celle-ci se trouvant le plus souvent dans une cellule spécifique) avec de la radioactivité. Le marquage facilite la découverte de l’emplacement de la molécule au niveau des organites cellulaires.

La molécule qu’on recherche va être marquée par certains isotopes radioactifs*. Ceux-ci deviennent les marqueurs ou traceurs de la molécule dans la cellule.

En plus de connaître l’emplacement de la molécule on souhaite connaître son emplacement et son déplacement au cours du temps.

 

Ici un exemple (cliquer sur le lien pour voir l’animation) avec une leucine radioactive (la leucine étant un acide animé): on cherche dans des cellules où sont ces molécules de leucine, à quoi elles servent et dans quelle protéine elle sera utilisée.

Pour les trouver, on utilise alors l’autoradiographie.

Cet animation explique aussi comment se déroule l’autoradiographie.

http://svt.ac-creteil.fr/archives/Media/Med1S/Autoradiographie/autoradiographie.htm

 

Remarque: Après avoir tué les cellules (pour pouvoir analyser l’emplacement de la leucine à un temps t ) les rayons utilisés lors de l’autoradiographie pour analyser le stade des cellules sont les rayons gamma et les particules beta (voir le cours de radioactivité de première) .

 

Aide

- Un isotope (par exemple un carbone avec 14 neutrons) est un atome qui a les mêmes propriétés chimiques que les corps équilibrés (exemple un carbone avec 12 neutrons) puisque le nombre d’électrons et leur répartition dans les différentes couches sont identiques.  = “ même place, même case dans la classification périodique des éléments”

De plus certains isotopes sont stables mais ce n’est pas le cas de tous, on dit que se sont des isotopes radioactifs. En effet l’excès de matière dans le noyau entraîne un déséquilibre et déclenche la transformation d’un neutron en proton plus un électron. Après cette transformation le proton supplémentaire apparu fait changer la nature de l’atome ( le carbone 14 devient de l’azote a 14 neutrons et une émission béta moins).

Il faut savoir qu’un isotope n’est pas radioactif en permanence.  De plus c’est l’émission de béta qui le rend visible. Il se comporte comme l’atome stable et n’est donc pas détectable jusqu’au moment, imprévisible où il y a la transformation.


Des exemples d’autoradiographie avec des images

 

autoradiographie feuille CO2


On peut localiser dans un tissu une activité de l’organe étudié.

 Exemple : On cherche a mettre en évidence l’utilisation de dioxyde de carbone dans la photosynthèse. On prend une feuille d’érable que l’on place dans une atmosphère dans laquelle on a mis du dioxyde de carbone radioactif.

On obtient les résultats suivants : Les zones foncées sur l’image de droite correspondent à la présence de dioxyde de carbone radioactif.

On peut déduire de cette expérience que la photosynthèse a lieu dans les zones où on trouve le dioxyde de carbone radioactif, c’est à dire en bordure des nervures de la feuille.

 

arn autoradiographie
Les deux photographies ci-dessus présentent des autoradiographies de cellules qui ont été cultivées en présence d’un précurseur radioactif spécifique de l’ARN. Chaque tache noire repère un endroit où se trouve de l’ARN ayant incorporé le précurseur radioactif.

Des cellules animales sont cultivées sur un milieu contenant de l’uracile radioactif.
a. Autoradiographie après culture sur milieu radioactif pendant 15 minutes.
b. Autoradiographie après culture sur milieu radioactif pendant 15 minutes puis transfert sur un milieu de culture non radioactif pendant une heure et demie.
L'ARN est formé dans le noyau (a) mais, contrairement à l'ADN, on le retrouve peu après dans le cytoplasme (b).

 On peut donc observer que l’ARN radioactif se déplace.

Sources
http://documents.irevues.inist.fr/bitstream/handle/2042/9156/ASTER_1989_8_81.pdf?sequence=1 Page 6:

http://svt.enligne.free.fr/spip.php?article24

http://www8.umoncton.ca/umcm-gauthier_didier/siitub/radautofluo.html

http://fr.wikibooks.org/wiki/Photographie/Techniques_scientifiques/Autoradiographie

http://www.lfmadrid.net

http://raymond.rodriguez1.free.fr/Textes/1s13.htm

 

Résumé

L’autoradiographie est une technique de laboratoire permettant de localiser des molécules sur une préparation microscopique. Les cellules sont mises en culture dans un milieu contenant un substrat radioactif. Pour localiser une protéine, on utilise un acide aminé (par exemple la leucine) où des atomes d’hydrogène sont radioactifs. Les cellules incorporent ce substrat à leurs propres molécules qui deviennent alors radioactives, on dit qu’elles sont marquées.
Quand la culture s’est développée les cellules sont lavées de manière à éliminer toute trace de substrat radioactif non incorporé à une molécule. Par exemple toute trace d’acide aminé radioactif non incorporé à une protéine.
On réalise enfin une préparation microscopique que l’on dispose sur un film photographique argentique. Celui-ci est impressionné par le rayonnement radioactif. Après développement du film on observe des points noirs sur les clichés aux endroits où se trouvent les molécules marquées.



Repost 0
Published by lebioblog - dans BIOTECHNO
14 décembre 2012 5 14 /12 /décembre /2012 16:43

 Un indispensable supplément Géologie dans la rubrique BIOTECHNO

par Séginus Mowlavi et Yves-Marie Ducimetière

 

Le microscope polarisant, qu’est-ce que c’est ?

Regardons d’abord à quoi ça ressemble :

microscope-pol.jpg

Cela ressemble fort à un microscope optique normal, n’est-ce-pas ?

Eh bien, tout à fait ! Il y a juste une légère différence, qui va tout changer : le microscope comporte deux filtres à lumière, un en-dessous des lames à observer, un au-dessus.

 

Que font ces filtres ?

Il faut d’abord savoir que la lumière est composée d’ondes ; chaque onde se propage dans un plan donné :

polarisation-1.jpg

Et les filtres à lumière de notre microscope agissent comme des grilles, qui ne laissent passer que les rayons qui sont dans un plan parallèle aux barreaux de la grille :

 

polarisation2

 

Comme la lumière est émise (ou réfléchie) dans tous les plans, de la lumière passe encore à travers un seul filtre ; ça explique que l’on puisse encore voir à travers un seul filtre.

De même si on met deux filtres l’un sur l’autre, avec leurs “barreaux” dans le même sens, la lumière passe aussi :

pol-3.jpg

Par contre si les deux filtres ont leurs barreaux dans un sens différent; la lumière ne passe plus, car les ondes qui auront pu passer par le premier filtre sont bloquées par le deuxième filtre. On ne voit alors plus rien :

pol-4.jpg

Mais alors quel est l’intérêt d’avoir un microscope polarisant si on ne voit rien à travers ?

En fait on ne voit rien seulement quand il n’y a rien à voir : quand on met une lame de roche entre les deux filtres, on voit quelque chose :

pol-5.jpg

Comment cela se fait-il ?

Les cristaux ont la propriété de changer certaines propriétés de la lumière, dont le plan dans lequel elle se propage.

Cela explique donc qu’on puisse voir quelque chose même avec nos deux filtres dans un sens différent : la lumière qui a réussi à passer par le premier filtre, en passant par les cristaux, va pouvoir “s’adapter” pour passer dans le deuxième filtre.

Incroyable, non ?

Et chaque cristal change la lumière d’une façon différente selon la couleur. Ainsi si on n’observe qu’un seul cristal, seule une couleur pourra être “adaptée” de la bonne façon pour passer le deuxième filtre : ce qu’on observera sera coloré.

 

Et la couleur qui passe dépend évidemment du cristal. Ainsi le microscope polarisant permet de bien distinguer tous les cristaux qui composent une roche, comme dans les photos ci-dessous.

 

 pol 6

 

pol 7

 

Si vous voulez en savoir plus :

- Une description plus détaillée de ce microscope :

http://les.mineraux.free.fr/dossier-mineralo/microscope/microscope.htm

- Si vous arrivez à installer le plug-in QuickTime et si vous avez le haut-débit :

http://www.discip.crdp.ac-caen.fr/svt/cgaulsvt/travaux/Micropol/

- Et enfin un TPE à propos de la biréfringence, le phénomène qui fait que les cristaux font changer le plan de la lumière :

http://rennes.udppc.asso.fr/IMG/pdf/dossier46.pdf

Repost 0
Published by lebioblog - dans BIOTECHNO

Le Bioblog, C'est Quoi ?

  • : lebioblog
  • : Le bioblog du lycée de Ferney-Voltaire? Des articles, des photos et des vidéos conçus par des élèves du lycée. Rubriques proposées: BIOACTU: des articles sur l'actualité en biologie et en médecine. BIOTECHNO: pour comprendre les techniques utilisées en biologie cellulaire. BIOACTION: le développement durable au lycée.Et plus encore... En bonus, la rubrique BIOWEB: une sélection de sites pour réviser ses cours. Conception et coordination : Jean-Yves Guichot
  • Contact

Recherche

Liens